
Intermediate V-Notch Weir Sizes

There are six standard angles for V-notch weirs: 22-1/2°, 30°, 45°, 60°, 90°, and 120° any for most applications these are sufficient. There are times, however, where flow measurement at a site needs to be more finely tuned that the standard sizes allow or a site needs to be calibrated for an incorrect made weir notch. Regardless of the reason, there is a need to be able to calculate discharge equations for intermediate V-notches.

For V-notches between 25 and 100 degrees, the Kindsvater-Shen relationship can be applied to calculate the free-flow discharge equation (Kulin and Compton). The equation is as follows:

Q=4.28 C_e tan (Ø/2) $h_{1e}^{2.5}$ Q = discharge (cfs) Ce = effective discharge coefficient h_1 = head on the weir (feet) $h_{1e} = h_1 + k_h$ (feet) k_h = head correction factor (feet) Ø=angle of V-notch

The effective discharge coefficient, C_e , and the head correction factor, k_h , can be obtained from the charts below (BSI):

Note that the equation and correction factors apply to fully contracted V-notches. Partially contracted (90°) V-notches rely on different C_{a} values.

